A q-Analog of the Hook Walk Algorithm for Random Young Tableaux
نویسنده
چکیده
A probabilistic algorithm, called the q-hook walk, is defined. For a given Young diagram, it produces a new one by adding a random box with probabilities, depending on a positive parameter q. The corresponding Markov chain in the space of infinite Young tableaux is closely related to the knot invariant of Jones, constructed via traces of Hecke algebras. For q = 1, the algorithm is essentially the hook walk of Greene, Nijenhuis, and Wilf. The g-hook formula and a q-deformation of Young graph are also considered.
منابع مشابه
Generalization of the Schensted Algorithm for Rim Hook Tableaux
In [6] Schensted constructed the Schensted algorithm, which gives a bijection between permutations and pairs of standard tableaux of the same shape. Stanton and White [8] gave analog of the Schensted algorithm for rim hook tableaux. In this paper we give a generalization of Stanton and White’s Schensted algorithm for rim hook tableaux. If k is a fixed positive integer, it shows a one-to-one cor...
متن کاملAn Elementary Proof of the Hook Formula
The hook-length formula is a well known result expressing the number of standard tableaux of shape λ in terms of the lengths of the hooks in the diagram of λ. Many proofs of this fact have been given, of varying complexity. We present here an elementary new proof which uses nothing more than the fundamental theorem of algebra. This proof was suggested by a q, t-analog of the hook formula given ...
متن کاملAnother Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula
Another bijective proof of Stanley’s hook-content formula for the generating function for semistandard tableaux of a given shape is given that does not involve the involution principle of Garsia and Milne. It is the result of a merge of the modified jeu de taquin idea from the author’s previous bijective proof (“An involution principle-free bijective proof of Stanley’s hook-content formula”, Di...
متن کاملHook Formulas for Skew Shapes
The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...
متن کاملBijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted
Bijective proofs of the hook formulas for the number of ordinary standard Young tableaux and for the number of shifted standard Young tableaux are given. They are formulated in a uniform manner, and in fact prove q-analogues of the ordinary and shifted hook formulas. The proofs proceed by combining the ordinary, respectively shifted, Hillman–Grassl algorithm and Stanley's (P, ω)-partition theor...
متن کامل